Connectivity Analysis in AFNI

File: Connectivity.pdf

Gang Chen
SSCC/NIMH/NIH/HHS

Why connectivity?

- Understanding communications in brain networks
 - More interesting than regional activations
 - □ May indicate some abnormal situations (ASD, schizophrenia)
 - Connectome!!!
- Many connectivity methods
 - People try to squeeze the data as hard as possible
 - Unlike activation detection, connectivity analysis methods are usually unsatisfactory or controversial
 - Two aspects: poor data and poor models
 - Publish or perish?
 - Only a few introduced here
 - Focus more on understanding methods than recommending

Structure of this lecture

- Two categories of connectivity analysis
 - Seed-based (vs. functional connectivity)
 - □ Network-based (vs. effective connectivity)
- Seed-based analysis
 - Simple correlation
 - Context-dependent correlation (PPI)
 - Seed-based bivariate autoregression (Granger)
- Network-based analysis
 - Structural equation modeling (SEM)
 - Vector autoregression (VAR) (aka Granger causality)
 - □ Structural vector autogression (SVAR)

Overview: Connectivity analysis

- Typical FMRI data analysis
 - □ Massively univariate (voxel-wise) regression: $y = X\beta + ε$
 - Relatively robust and reliable
 - May infer regions involved in a task/state, but can't say much about the details of a network
- Network analysis
 - Information
 - Seed region, some or all regions in a network
 - Neuroimaging data (FMRI, MEG, EEG): regional time series
 - Inferring interregional communications
 - Inverse problem: infer neural processes from BOLD signal
 - Based on response similarity (and sequence)
 - Difficult and usually not so reliable

Overview: Connectivity analysis

- Two types of network analysis
 - Not sure about ALL the regions involved
 - Seed-based: use a seed region to search for other ROIs
 - ☐ If all regions in a network known
 - Prior knowledge
 - Network-based: A network with all relevant regions known
 - Everything is relative: No network is fully self-contained
- Currently most methods are crude
 - Models: underlying assumptions not met
 - Data quality: temporal resolution, low signal-to-noise ratio, poor understanding of FMRI signal

Seed-based analysis: ROI search

- Regions involved in a network are unknown
 - □ Bi-regional (seed vs. whole brain) (3d*): brain volume as input
 - Mainly for ROI search
 - □ Popular name: functional connectivity
 - □ Basic, coarse, exploratory with weak assumptions
 - □ Methodologies: simple correlation, PPI, bivariate autoregression
 - □ Weak interpretation: may or may not indicate directionality/causality

Network-based analysis

- Regions in a network are known
 - □ Multi-regional (**1d***): ROI data as input
 - Model strategy
 - Model validation + connectivity strength testing
 - Data driven
 - Popular name: effective or structural connectivity
 - Strong assumptions: specific, but with high risl
 - Methodologies: SEM, VAR, SVAR, DCM
 - □ Directionality, causality (?)

Common Preparatory Steps

- Warp brain to standard space
 - Uber_subject.py, uber_align_test.py, adwarp, @auto-tlrc, align epi anat.py
- Create ROI
 - Peak voxel or sphere around a peak voxel: 3dUndump —master ... —srad ...
 - □ Activation cluster-based (biased unless from independent data?)
 - Anatomical database or manual drawing
- Extract ROI time series
 - □ Average over ROI: 3dmaskave —quiet —mask, or 3dR0Istats —quiet —mask
 - Principal component among voxels within ROI: 3dmaskdump, then 1dsvd
 - □ Seed voxel with peak activation: **3dmaskdump** -noijk -dbox
- Remove effects of no interest
 - □ 3dSynthesize (effects of no interest) and 3dcalc (effects of interest)
 - □ **3dDetrend** —**polort** (trend removal)
 - □ **RETROICORR/RetroTS.m** (physiological confounds)
 - 3dBandpass (bandpass filtering)
 - **QANATICOR** (resting state data)

Simple Correlation Analysis

- Resting state data analysis: seed vs. rest of brain
- ROI search based on response similarity
 - □ Looking for regions with similar signal to seed: spontaneous fluctuations
- Correlation at individual subject level
 - □ Usually have to control for effects of no interest: drift, head motion, physiological variables, censored time points, tasks of no interest, *etc*.
- Applying to experiment types
 - □ Straightforward for resting state experiment: default mode network (DMN)
 - With tasks: correlation under a specific condition or resting state?
- Program: 3dDeconvolve or afni_proc.py

 - ightharpoonup r: linear correlation; slope for standardized Y and X
 - \Box β : slope, amount of **linear** change in Y when X increases by 1 unit

Simple Correlation Analysis

- Group analysis
 - □ Run Fisher-transformation of r to Z-score and t-test: **3dttest++**
- Interactive tools in AFNI and SUMA:
 - uber_subj.py, InstaCor, GroupInstaCor
- Caveats: don't over-interpret
 - □ Correlation: crude measurement at the presence of significant noise
 - Only linearity relationship
 - □ Correlation does not necessarily mean causation: no proof for anatomical connectivity (e.g., more than two regions in a network)
 - □ No golden standard procedure and so many versions in analysis: seed region selection, confounds, head motions, **preprocessing steps**, ...
 - Measurement error problem: underestimation, attenuated bias

- Popular name: Psycho-Physiological Interaction (PPI)
- Regression analysis at individual level
 - Brain response varies in magnitude across multiple trials (repetitions)
 - Habituations, random fluctuations, ...
 - □ Regresson only accounts for the AVERAGE response across trials
 - Trial-to-trial fluctuations treated as noise (residuals)
 - Do the fluctuations provide some information about the brain network?
- Image three components
 - \square Main effect of condition (or contrast): C(t)
 - \square Main effect of seed on target: S(t)
 - □ Interaction between the two effects: I(C(t), S(t))
 - Implicit directionality assumption here!

- Model for each subject
 - Original regression: $y(t) = [C(t) \text{ Others}] \mathcal{W} + \mathcal{W}(t)$
 - New model: y(t) = [C(t) S(t) I(C(t), S(t)) Others] [W] + [W](t)
 - C(t) and S(t): like main effects in a two-way ANOVA
 - I(C(t), S(t)): interaction (regressor of interest)
 - \square 2 more regressors than original model: S(t), I(C(t), S(t))
 - □ Should effects of no interest be included in the model?
 - Others NOT included in SPM
 - \square What we care for: β for I(C(t), S(t))
 - \square I(C(t), S(t)) accounts for the variability in addition to C(t) and S(t)
 - Symmetrical modulation

- How to formulate interaction I(C(t), S(t))?
 - □ Interaction at neuronal, not BOLD (an indirect measure), level
 - □ **Deconvolution**: derive neuronal response from BOLD response
 - Assuming standard (fixed) impulse response
 - o **3dTfitter**: Impulse W Neural events = BOLD response; Gamma W NE(t) = S(t)
 - Deconvolution matters more for event-related than block experiments
 - □ Interaction at neuronal level **3dcalc**: $NE(t) \times C(t) = NI(t)$
 - **timing_tool.py** converts stimulus timing into 0s and 1s
 - 1s and -1s for contrast, and 1s and 0s for condition vs. baseline

- How to formulate interaction I(C(t), S(t))?
 - Interaction at BOLD level convolution **waver**: Gamma \mathbb{W} NI (t) = I(C(t), S(t))
 - □ If stimuli presented in a higher resolution than TR not TR-locked
 - Up-sample first: use **1dUpsample n** to interpolate S(t) n **W** finer before deconvolution **3dTffiter**
 - o Down-sample interaction I(C(t), S(t)) back to original TR: **1dcat** with selector ' $\{0...\$(n)\}$ '
 - Regression: $y(t) = [C(t) S(t) I(C(t), S(t)) Others] \mathcal{W} + \mathcal{W}(t) 3dDeconvolve$
 - □ Website: http://afni.nimh.nih.gov/sscc/gangc/CD-CorrAna.html
- Group analysis: Take β (+t): **3dttest** (**3dMEMA**)

PPI Caveats

- No proof for anatomical connectivity
 - Correlation does not necessarily mean causation
 - Only modeling interactions between two regions

- Poor understanding of BOLD
- Neural response hard to decode: Deconvolution is not so reliable, with assumption of a fixed-shape HRF, same across trials/conditions/regions/subjects/groups
- □ Noisy seed time series: attenuation or regression dilution
- Directionality presumption
- No information about interaction between condition and target on seed
- No differentiation whether modulation is
 - Condition on neuronal connectivity from seed to target, or
 - □ Neural connectivity from seed to target on condition effect

Network-Based Modeling: a toy example

A network with two regions: both contemporaneous and delayed

- □ Within-region effects: lagged correlation
- Cross-regions effects: both instantaneous and lagged

$$x_1(t) = c_1 + \alpha_{120}x_2(t) + \alpha_{111}x_1(t-1) + \alpha_{121}x_2(t-1) + \varepsilon_1(t)$$

$$x_2(t) = c_2 + \alpha_{210}x_1(t) + \alpha_{211}x_1(t-1) + \alpha_{221}x_2(t-1) + \varepsilon_2(t)$$

- If we have time series data from the two regions
 - □ Can we evaluate the above model?
 - \Box Estimate and make inferences about the connections (α values)?

Structure Equation Modeling (SEM): a toy example

- A network with two regions: no delayed effects
 - □ No within-region effects: no lagged effects no temporal correlation!
 - Cross-region effects: instantaneous correlation only; no lagged effects

$$x_1(t) = c_1 + \alpha_{120}x_2(t) + \varepsilon_1(t)$$

$$x_2(t) = c_2 + \alpha_{210} x_1(t) + \varepsilon_2(t)$$

- If we have time series data from the two regions
 - □ Can we evaluate the above model?
 - \Box Estimate and make inferences about the α values?

Vector Autoregressive (VAR) Modeling: a toy example

- A network with two regions: no contemporaneous effects
 - □ Within-region effects: lagged effects
 - □ Cross-regions effects: lagged effects only; no instantaneous effects

$$x_1(t) = c_1 + \alpha_{111}x_1(t-1) + \alpha_{121}x_2(t-1) + \varepsilon_1(t)$$

$$x_2(t) = c_2 + \alpha_{211}x_1(t-1) + \alpha_{221}x_2(t-1) + \varepsilon_2(t)$$

- If we have time series data from the two regions
 - □ Can we evaluate the above model?
 - \Box Estimate and make inferences about the α values?

Structure Equation Modeling (SEM) or Path Analysis

- General model for a network of *n* regions $X^*(t) = A_0 X^*(t) + \varepsilon(t)$
 - Only consider instantaneous effects; assumes no delayed effects
 - □ Data centered around mean; if possible, remove all confounding effects
 - \square Parameters in A_0 code for cross-region path strength; zero diagonals
 - $\mathbf{E}(t) \sim N(0, \mathbf{\Psi}), \mathbf{\Psi}$: diagonal matrix (interregional correlations: A_0)
- Solving SEM: guess directional connections based on correlations
 - □ Compare covariance matrix from data with the one from the model

$$\Sigma = (I - A_0)^{-1} \varepsilon \varepsilon^T (I - A_0)^{-T} = (I - A_0)^{-1} \Psi (I - A_0)^{-T}$$

- One problem: we can't solve SEM if all parameters in A_0 are unknown!
 - Totally n(n+1)/2 simultaneous equations; $n(n-1)+n=n^2$ unknowns!
 - Can only allow at most n(n-1)/2 paths, half of the off-diagonals
 - Have to fix the rest paths (at least n(n-1)/2) to 0 or known values

SEM: Model Validation

- Null hypothesis H_0 : It's a good model about instantaneous network
 - Knowing directional connectivity btw ROIs, does data support model?
 - Want to see model (H_0) not rejected
 - $\chi^2(n(n-1)/2-k)$ -test: badness-of-fit
 - Fit indices (AIC, CFI, GFI,): balance between optimization and model complexity
 - □ Input: model specification, covariance/correlation matrix, etc.
 - \blacksquare If H_0 is **not** rejected, estimate path strengths

SEM: Model Comparison and Search

- Comparing two nested models through $\chi^2(1)$ -test
 - □ For example, not sure about a pth
- Search all possible models
 - Sounds appealing: often seen in literature
 - Problematic: data-driven vs. theory-based
 - Learn from data, and don't let data be your master!

SEM: Serious Problems

- Most models are like bikinis!
- Correlations as input in SEM: popular practice
 - Usually practiced in social science studies for scaling issues
 - Save DFs in FMRI data analysis
 - Path coefficients not interpretable
 - Can't make statistical inferences: t-stat and CI, if provided, are incorrect
- Assumption of no delayed effects
 - Within-region temporal correlations ignored
 - Cross-regions: delayed interactions ignored
- Data preprocessing: Have to remove all confounding effects
- Individual subjects vs. group
 - How to combine multiple multiple subjects
 - □ Fixed vs. random-effects analysis

Vector Autoregression (VAR)

- General model for a network of n regions VAR(p)

 - Only focus on lagged effects: Current state depends linearly on history
 - □ Instantaneous effects modeled, but left in residuals as effects of no interest
 - □ Confounding (exogenous) effects can be incorporated as part of the model
 - o Slow drift, head motion, physiological confounds, time breaks, conditions of no interest
 - Unlike SEM, only minimal pre-processing needed (slice timing + motion correction)
 - \square Parameters in A_i code for cross-region path strength: Meaning of path coefficients
 - Assumptions
 - Linearity; Stationarity/invariance: mean, variance, and auto-covariance
 - $\mathcal{E}(t) \sim N(0, \Psi)$, Ψ: not diagonal matrix (positive definite contemporaneous covariance); no serial correlation in individual residual time series
- Rationale for VAR(p)
 - Response to stimuli does not occur simultaneously across brain: latency
 - \Box However, is data time resolution fine enough with TR = 2 sec???

Solving VAR

- $Model X(t) = A_1 X(t-1) + \dots + A_p X(t-p) + \mathbf{c}_1 \chi_1(t) + \dots + \mathbf{c}_q \chi_q(t) + \boldsymbol{\varepsilon}(t)$
 - Order selection with 4 criteria (1st two tend to overestimate)
 - AIC: Akaike Information Criterion
 - FPE: Final Prediction Error
 - o HQ: Hannan-Quinn
 - SC: Schwartz Criterion
- Solve VAR with OLS
 - No need to specify connections as in SEM
 - Obtain estimates of all elements in A_i , and make statistical inferences based on *t*-statistic for each path
 - **Data driven** instead of model validation?
 - Model tuning when some covariates are not significant
- VAR as a seed-based analysis
 - Bivariate autogression: use seed to search for regions that may form a network with the seed
 - **3dGC** (vs. 1dGC): should have been called 3dVAR (vs. 1dVAR)

VAR Model Quality Check

- Stationarity: VAR(p) $Y(t) = \alpha + A_1Y(t-1) + ... + A_pY(t-p) + \epsilon(t)$
 - □ Check characteristic polynomial $\det(I_n A_1 \chi ... A_p \chi^p) \neq 0$ for $|\chi| \leq 1$
- Residuals normality test
 - □ Gaussian process: Jarque-Bera test (dependent on variable order)
 - □ Skewness (symmetric or tilted?)
 - □ Kurtosis (leptokurtic or spread-out?)
- Residual autocorrelation
 - Portmanteau test (asymptotic and adjusted)
 - □ Breusch-Godfrey LM test
 - \Box Edgerton-Shukur F test
- Autoregressive conditional heteroskedasticity (ARCH)
 - □ Time-varying volatility
- Structural stability/stationarity detection
 - □ Is there any structural change in the data?
 - Based on residuals or path coefficients

VAR: Serious Problems

- Data sampling rate: time resolution
 - \square Cross-region interactions occur probably at ms level, but usually TR = 2s in FMRI time series (TR could be 100-200 ms with single-slice scanning)
 - □ Will VAR(1) catch the real lagged effects across regions???

- □ With coarse sampling, the instantaneous effects will more likely reveal the real network than the lagged effects
- Endogeneity problem or over-fitting: data driven

Network-Based Modeling: a toy example

- A network with two regions: both contemporaneous and delayed
 - □ Within-region effects: lagged correlation
 - Cross-regions effects: both instantaneous and lagged

$$x_1(t) = c_1 + \alpha_{120}x_2(t) + \alpha_{111}x_1(t-1) + \alpha_{121}x_2(t-1) + \varepsilon_1(t)$$

$$x_2(t) = c_2 + \alpha_{210}x_1(t) + \alpha_{211}x_1(t-1) + \alpha_{221}x_2(t-1) + \varepsilon_2(t)$$

- If we have time series data from the two regions
 - □ Can we evaluate the above model?
 - \Box Estimate and make inferences about the α values?

One World United Under One Flag!

- Why don't we just combine SEM and VAR?
 - □ No reason we shouldn't or cannot
 - Called Structural Vector Autoregression (SVAR)!
 - □ Accounts for variability from both instantaneous and lagged effects
 - □ Improves model quality and statistical power
 - □ Incorporates covariates, and involves minimum pre-processing
- General SVAR(p) model

 - $lue{}$ A_0 represents the cross-region instantaneous effects
 - Diagonals are 0
 - \Box A_i represents both within-region and cross-region lagged effects
 - \Box B is a diagonal matrix so that $\boldsymbol{\varepsilon}$ (t) \sim N(0, I)
 - All the cross-region instantaneous effects are contained in A_0

Solving SVAR

- $X(t) = A_0 X(t) + A_1 X(t-1) + \dots + A_p X(t-p) + \mathbf{c}_1 \zeta_1(t) + \dots + \mathbf{c}_q \zeta_q(t) + B \boldsymbol{\varepsilon}(t)$
 - □ Equivalence to a reduced VAR(p) model

$$X(t) = A_1^* X(t-1) + \dots + A_p^* X(t-p) + \mathbf{c}_1^* z_1(t) + \dots + \mathbf{c}_q^* z_q(t) + \varepsilon^*(t)$$

$$A_i^* = (I - A_0)^{-1} A_i, \mathbf{c}_i^* = (I - A_0)^{-1} \mathbf{c}_i, \mathcal{C}_i^* = (I - A_0)^{-1} B \mathbf{\varepsilon} (t)$$

- Solve the reduced VAR(p), obtain estimates of A_i^* , \mathbf{c}_j^* , and residual covariance $\mathbf{W}_{\mathbf{W}^*}$
- Solve $(I-A_0)^{-1}BB(I-A_0)^{-T} = \mathbb{Z}_{\mathbb{Z}^*}$ through ML. Similar to SEM:
 - o Totally n(n+1)/2 simultaneous equations; $n(n-1)+n=n^2$ unknowns!
 - Can only allow at most n(n-1)/2 paths in A_0 , half of the off-diagonals
 - Have to fix the rest paths (at least n(n-1)/2) to 0 or known values
 - Model validation, comparison, and search for the instantaneous network A_0
- □ Finally update A_i (and \mathbf{c}_i) for the lagged effects
- AFNI program 1dSVAR.R

What can we do with 1dSVAR

- If time resolution is too coarse (e.g., FMRI): Model validation/comparison/search of the instantaneous network while accounting for the lagged effects
 - Knowing directional connectivity btw ROIs, does data support model?
 - \square Want to see model (H_0) not rejected
 - $\chi^2(n(n-1)/2-k)$ -test: badness-of-fit
 - Fit indices (AIC, CFI, GFI,): balance between optimization and model complexity
 - \Box If H_0 is **not** rejected, what are the path strengths?
- If time resolution is good (e.g., MEG/EEG)
 - Both instantaneous and lagged effects are of interest?
- SEM+VAR
 - Lagged effects: data-driven; safe but inefficient (over-fitting)
 - □ Instantaneous effects: theory/hypothesis-based; powerful but risky
 - □ Various possibilities: *e.g.*, borrow DFs for instantaneous effects from lagged effects?
- Group analysis: MEMA

SVAR: caveats

- Assumptions (stationarity, linearity, Gaussian residuals, no serial correlations in residuals, etc.)
- Accurate ROI selection: If an essential region is missing

- Sensitive to lags
- Confounding latency due to HDR variability and vascular confounds
- Overfitting
- Model comparison/search
 - Learn from data, but don't let data be your teacher!

SVAR applied to FMRI

- Resting state
 - Ideal situation: no cut and paste involved
 - □ Physiological data maybe essential?
- Block experiments
 - □ Duration \geq 5 seconds?
 - Extraction via cut and paste
 - Important especially when handling confounding effects
 - Tricky: where to cut especially when blocks not well-separated?
- Event-related design
 - With rapid event-related, might not need to cut and paste (at least impractical)
 - Other tasks/conditions as confounding effects

SVAR: Why not Granger Causality

- Causality: philosophical and physiological/anatomical; effective?
- Granger causality: A Granger causes B if time series at A provides statistically significant information about time series at B at some time delays (order)
 - Causes must temporally precede effects
 - Causality can be inferred from an F- or \mathbb{Z}^2 -test that shows the amount of variability of overall lagged effects each connection accounts for
- Both instantaneous and lagged effects are modeled in SVAR

Network-based Analysis in AFNI

- Exploratory: ROI searching with 3dGC
 - Seed vs. rest of brain
 - Bivariate model
 - □ 3 paths: seed to target, target to seed, and self-effect
 - □ Group analysis with **3dMEMA** or **3dttest**
- Path strength significance testing in network: 1dSVAR
 - Pre-selected ROIs
 - SVAR model
 - Multiple comparisons issue
 - Group analysis
 - path coefficients only
 - path coefficients + standard error
 - F-statistic (BrainVoyager)

Keep in mind

- Statisticians, like artists, have the bad habit of falling in love with their models. (George Box)
- If you torture the data enough, nature will always confess. (Ronald Coase)
- Models are bikinis!